Chapter 6

Curved spacetime and General
Relativity

6.1 Manifolds, tangent spaces and local inertial
frames

A manifold is a continuous space whose points can be assigned coordinates, the
number of coordinates being the dimension of the manifold | for example a surface
of a sphere is 2D, spacetime is 4D |.

A manifold is differentiable if we can define a scalar field ¢ at each point which
can be differentiated everywhere. This is always true in Special Relativity and
General Relativity.

We can then define one-forms d¢ as having components {00 = B_ax%} and
vectors V as linear functions which take aqﬁ into the derivative of ¢ along a curve
with tangent V:

V(o) = Vvo =gV = % . (6.1)
Tensors can then be defined as maps from one-forms and vectors into the reals |

see chapter 3 |.

A Riemannian manifold is a differentiable manifold with a symmetric metric

tensor g at each point such that
g(V,V)>0 (6.2)
for any vector V, for example Euclidian 3D space.
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If however g (V, V) is of indefinite sign as it is in Special and General Relativity

it is called Pseudo - Riemannian.

For a general spacetime with coordinates {x“}, the interval between two neigh-
boring points is

ds? = gagdar®da” . (6.3)

In Special Relativity we can choose Minkowski coordinates such that g.g = 14s
everywhere. This will not be true for a general curved manifold. Since g,g is
a symmetric matrix, we can always choose a coordinate system at each point

Xy in which it is transformed to the diagonal Minkowski form, i.e. there is a

transformation
- or®
Ay = — 6.4
e (6.4)
such that
-1 0 0 O
01 0 0
g@B<X0) = 77075 = 0 0 1 0 (65)
0 0 0 1

Note that the sum of the diagonal elements is conserved; this is the signature of
the metric [ +2 |.

In general A% will not diagonalize g, at every point since there are ten func-
tions gas(x) and only four transformation functions X(x?).

We can also choose A% so that the first derivatives of the metric vanishes at

Xg 1.e.

6gaﬁ
=0 6.6
oxY (6.6)
for all a;, # and . This implies
Jap(@") = 1ag + O[(2")?] . (6.7)

That is, the metric near x, is approximately that of Special Relativity, differences
being of second order in the coordinates. This corresponds to the local inertial
frame whose existence was deduced from the equivalence principle.

In summary we can define a local inertial frame to be one where

9ap(X0) = Tag (6.8)
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for all o, 3, and
Jap(%0) =0 (6.9)
for all «, 3, v. However

9asu(X0) 7 0 (6.10)

for at least some values of a.. 3, v and p.

It reflects the fact that any curved space has a flat tangent space at every point,

although these tangent spaces cannot be meshed together into a global flat space.
Recall that straight lines in a flat spacetime are the worldlines of free particles;
the absence of first derivative terms in the metric of a curved spacetime will mean
that free particles are moving on lines that are locally straight in that coordinate
system. This makes such coordinates very useful for us, since the equations of
physics will be nearly as simple as they are in flat spacetime, and if they are tensor

equations they will be valid in every coordinate system.

6.2 Covariant derivatives and Christoffel sym-
bols

In Minkowski spacetime with Minkowski coordinates (t,z,y, z) the derivative of a

vector V = V%, is just
av oV«

018 918 Ca

since the basis vectors do not vary. In a general spacetime with arbitrary coordi-

(6.11)

nates, e, which vary from point to point so

oV ove . De,

@ = Wea + V @ . (612)

Since Je, /0" is itself a vector for a given (3 it can be written as a linear combi-

nation of the bases vectors:

Oea _
orB

The I'’s are called Christoffel symbols [ or the metric connection |. Thus we have:

¥, 56, . (6.13)

v _ove

_ - amTp
08— 9P e, + VI ge, , (6.14)
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SO

oV ove o
27 (aﬂeﬁv g “ﬁ> N
Thus we can write
oV _ o
P

where

Va;ﬁ = Va,ﬁ + V“Faﬂﬁ .
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(6.15)

(6.16)

(6.17)

Let us now prove that V3 are the components of a 1/1 tensor. Remember in

section 3.5 we found that V' 5 was only a tensor under Poincaré transformations

in Minkowski space with Minkowski coordinates. V<3 is the natural generalization

for a general coordinate transformation.

Writing A% = %, we have:

Vi = VgV,

0 _ o
= AP (ASVY) 4 VAT

7 Qam
= AﬂﬁA%% + V”Aﬂﬁaan (Z + VITY5.
Now
% = T5e5
therefore
% W= T pgex W = T =T

so we obtain:

Ve = A%A%?@Z + V”Aﬂﬁaé/\ C; + w%wa
= A%A%?Z: + VA, aan CL + A%WA%WA;;% (A
oA,

+ NLVIATRA e, —

i€

v)

(6.18)

(6.19)

(6.20)

(6.21)



CHAPTER 6. CURVED SPACETIME AND GR 69

Now using AYzAF, = §%,, wle, = 8%, and AO‘V e = A”Maé\ » we obtain:
- 191744 ON%, ON®
“s = A%, A g "AY 5 AN SVPTO . — AM 5 v
V 3 8 V 8 + ) BV B afL‘“ V
ovY -
= A%, A g o +A°‘5AEBV”T‘SV6
- ovY
= A% A" (a + V0T ) : (6.22)
SO
V5= AT ARGV, (6.23)

We have shown that V5 are indeed the components of a 1/1 tensor. We write

this tensor as

VV =V°se, @ W’ . (6.24)

It is called the covariant derivative of V. Using a Cartesian basis, the components

are just V¢ 3, but this is not true in general; however for a scalar ¢ we have:

0 ~
Vab =00 = o0, Vo=do. (6.25)
ox®
since scalars do not depend on basis vectors.
Writing I'*,,5 = xﬁw we can find the transformation law for the components

of the Christoffel symbols.

[y = GO = AN i(“ueﬂ)

O ! e
= A%ATGAN TS, 4+ A°5A7 aaA;” (6.26)
This is just -
0= G G g5 Gt 521

We can calculate the covariant derivative of a one-form p by using the fact that

p(V) is a scalar for any vector V:

¢ =pV". (6.28)
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We have

ODa « 4 ove
Vﬁ¢ = ¢75:@V paw

OPa
- %Va + PV 5 = pa VI 45

Ipa a a

Since V¢ and V<3 are tensors, the term in the parenthesis is a tensor with

components:
Pa;3 = Pa,g — pul—waﬁ . (630)

We can extend this argument to show that
Vel = Tuwp=Tws— Tl us — Twalus
VT = TH 3=T" 5+ T 5+ T"T" 5,
VT, = TV, g=T", g+T* IV —T"T%3. (6.31)
6.3 Calculating ['“3, from the metric
Since V¢ 3 is a tensor we can lower the index o using the metric tensor:
Vg = gau V"5 - (6.32)
But by linearity, we have:
Vasp = (gauvu);g = JaupV" + gau V"5 - (6.33)
So consistency requires go,,5V* = 0. Since V is arbitrary this implies that

o = 0. (6.34)

Thus the covariant derivative of the metric is zero in every frame.

We next prove that I'*s, = I'*,5 [ i.e. symmetric in § and v ]. In a general

frame we have for a scalar field ¢:

¢;50¢ = ¢,ﬁ;oc = gb,ﬁa - Fyﬁaﬁb,y . (6.35)
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in a local inertial frame, this is just ¢ g, = ama;%> which is symmetric in 4 and «.
Thus it must also be symmetric in a general frame. Hence I'7,43 is symmetric in 3
and o

T =750 . (6.36)

We now use this to express I'7,5 in terms of the metric. Since gng,, = 0, we have:

Gop,u = Pyauguﬁ + Fyﬁugau . (637)

By writing different permutations of the indices and using the symmetry of I'7,g,
we get

gaﬁau + gau,ﬁ - gﬁu,a = 2gowryﬁu . (638)

Multiplying by $¢*7 and using ¢*7g,, = 7, gives

T = 39" (Gapu + Gops — Ioua) - (6.39)

Note that I'7, is not a tensor since it is defined in terms of partial derivatives.
In a local inertial frame I''g, = 0 since go5, = 0. We will see later the

significance of this result.

6.4 Tensors in polar coordinates

The covariant derivative differs from partial derivatives even in flat spacetime if
one uses non - Cartesian coordinates. This corresponds to going to a non- inertial
frame. To illustrate this we will focus on two dimensional Euclidian space with

2 = y) and polar coordinates (xi =r, 22 =0).

Cartesian coordinates (z! = z,

The coordinates are related by
: —1 2 2\ 1/2
xr=rcosf, y=rsinf, 6O=tan (%) , r:(x +y) . (6.40)

For neighboring points we have

dr = gdx + &dy = cos 0dx + sin 6dy , (6.41)
ox oy
and
0 0 1 1
df = a—dx + a—dy = ——sinfdx + — cos 0dy . (6.42)
ox dy r r
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We can represent this by a transformation matrix A%g:
dz® = A® gdxﬁ ,

where

A%z( cosf sind )

—Lgin® Lcosh
T T

Any vector components must transform in the same way.

For any scalar field ¢, we can define a one- form:

do — (% ,%) .
We have
06 _ 990x 000y
00 Ox 00 0y 00
- —rsin@% +rcoseg—‘§ ,
and

00 _ 0008 090y
or  Ox0r Oyor
99 o¢

= cosf— 4+ sinf—

Ox oy’

This transformation can be represented by another matrix A®z:

%
0B~ Poge”’

where
Ao cosf) —rsinf
A sinf rcosf )
Any one-form components must transform in the same way.

The matrices A%z and A“‘g are different but related:

AG AT — cosf sind cos) —rsind \
78T —Lsing  lcosd sinf rcosé a

1 0
0 1

).
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(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)
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This is just what you would expect since in general A%, A75 = 6%5.

The basis vectors and basis one- forms are

e, = A%e,=A"e,+ A e, =cosbe, +sinbe,,
eg = A%e, =AN"9e, + ANye, = —rsinfe, + rcosbe, , (6.51)
and
W= dr =N W= A, w® + A" WY = cos W” + sin WY |
~0 _ Jp _ A0 o __ A0 <=z 0 &y 1 ~ T 1 =~y
w' = df =N W =AW+ A WY = —sin0W® 4 - cos WY . (6.52)

Note that the basis vectors change from point to point in polar coordinates and

need not have unit length so they do not form an orthonormal basis:
le.|=1, leg=r, [W]=1, |W|=1. (6.53)
The inverse metric tensor is:

&b 10
g™ = ( 0 2 ) (6.54)

so the components of the vector gradient d¢ of a scalar field ¢ are:

¢
ro_ ar _rr ré _ -7
(do)" = 97¢a=9"0,+g 00 =7""
6 af _ro 00 _i%
(@0 = §%00 =50, + 00 = 5or (6.55)

This is exactly what we would expect from our understanding of normal vector
calculus.

We also have:

%e; = % (cosfe, +sinfe,) =0, (6.56)
and
%?:%9’ %:19, %: re, (6.57)
Since
Oes _ pi_te, . (6.58)
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we can work out all the components of the Christoffel symbols:

1 1
1%, = - 1%, = g [Mgg = —1, (6.59)

and all other components are zero.

Alternatively, we can work out these components from the metric | EXERCISE

%5, = 39° |95 + 955.5 — 9503 - (6.60)
In fact this is the best way of working out the components of I'* 55, and it is the
way we will adopt in General Relativity.
Finally we can check that all the components of g;3- = 0 as requited. For
example

Goo.r = Goo.r — I orgon — I orgpo

= (T2)77’ -

(r*)=0. (6.61)

6.5 Parallel transport and geodesics

A vector field V is parallel transported along a curve with tangent

dx
U=— 6.62
d)\ Y ( )

where A is the parameter along the curve [ usually taken to be the proper time 7
if the curve is timelike | if and only if

ave

0 6.6
o (6.63)
in an inertial frame. Since
ave  veds®
= = Py« 4
> o an Ve (6.64)
in a general frame the condition becomes:
UVe,s=0, (6.65)

i.e. we just replace the partial derivatives (,) with a covariant derivative (;). This is

called “the comma goes to semicolon” rule, i.e. work things out in a local inertial




CHAPTER 6. CURVED SPACETIME AND GR 1)

AN\

Timelike curve

U

Figure 6.1: Parallel transport of a vector V along a timelike curve with tangent
U.

frame and if it is a tensor equation it will be valid in all frames. The curve is a

geodesic if it parallel transports its own tangent vector:
UU®5=0. (6.66)

This is the closest we can get to defining a straight line in a curved space. In flat

space a tangent vector is everywhere tangent only for a straight line. Now
UPU* 5 =0= UU* 5+ T°,5U"U° =0. (6.67)

. @ . .
Since U% = ddi)\ and % = Uﬁa% we can write this as

Pa | po 2B (6.68)
d\2 AN dh '

This is the geodesic equation. It is a second order differential equation for z(\),
so one gets a unique solution by specifying an initial position xy and velocity U.
6.5.1 The variational method for geodesics

We now apply the variational techniques to compute the geodesics for a given
metric.

For a curved spacetime, the proper time dr is defined to be

1 1 o
dr? = _gdgz = —ggaﬁdx da” . (6.69)
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Remember in flat spacetime it was just

1
dr? = ——Qnaﬁdxo‘dxﬁ .
c

76

(6.70)

Therefore the proper time between two points A and B along an arbitrary timelike

curve is

B
Tap = / dr = [ S

= dze dzP]"?
N /A cl 9 () 5 d)\] @A
so we can write the Lagrangian as

) 1 da® dz®]"?
LA =4 [‘M’Qﬁﬂ ’

and the action becomes

Extremizing the action we get the Euler - Lagrange equations:

oL _d(oc
oxe  d\ \div )’

Now
oL 1 (- datder\ " Ogy, du’ da
oze 20\ I T 9 dx d\
and
oL _ L detdat\TE ) do?
i 20\ ImTaN Tan Jab~gx
Since
L[, dende?\'_dr
987N ax | T dx
we get
0L _ 1dA0gg, da” da”
ox®  2dr 0z d\ d\
and

oL dA dzP dzP

pin = Tar AN T T gy

(6.71)

(6.72)

(6.73)

(6.74)

(6.75)

(6.76)

(6.77)

(6.78)

(6.79)
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so the Euler - Lagrange equations become:

1d\ dggp, dzP dz? d dz”
STy 2 2 wi— | . 6.8
2dr 0zo dx dx  dx |77d (6.80)
Multiplying by % we obtain
199, dx’ dz¥  d dz”
L e e 6.81
2 0x* dr dr dr Job g ( )
Using
dgep  O0gap dx?
= 6.82
dr oxv dr ’ (6:82)
we get
19gs, dx’ dz? d*zP  0gap dx? da®
— I T T g, _ 6.8
29z dr dr 97 gr? Ox7 dr dt (6.83)
Multiplying by ¢° gives
d*z? so 10905 10gp, | daP dz?
— = —g°* S . 6.84
dr? [ Oxv 2 0x% | dr dr (6.84)
Now
0Gap d_xﬁﬁ _ 1 0gap dzP dz? Dgup dz daP
Ox" dr dr 2| Oxv dr dr Ox7 dr dr
1 [0gas  Ogay | da’ dz”
= = : 6.85
2 [83:’7 oxf | dr dr (6.85)
Using the above result gives us
¢z’ 1 5 [ gy _ ]d_;z:ﬁ@
d7'2 - 29 gaﬁ,’y ga’y,ﬁ gﬁ%a dT dT
dx® da”
= I, = :
B g dr (6.86)
so we get the geodesic equation again
d?z® 5 daPdxy
772 + N g 0 (6.87)

This is the equation of motion for a particle moving on a timelike geodesic in curved
spacetime. Note that in a local inertial frame i.e. where I5, = 0, the equation
reduces to

2z
=0, (6.88)
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which is the equation of motion for a free particle.
The geodesic equation preserves its form if we parameterize the curve by any
other parameter A such that
>\
dr?

for constants @ and b. A parameter which satisfies this condition is said to be

=0 = A=ar+b (6.89)

affine.

6.5.2 The principle of equivalence again

In Special Relativity, in a coordinate system adapted for an inertial frame, namely
Minkowski coordinates, the equation for a test particle is:
d*x®
drz

If we use a non - inertial frame of reference, then this is equivalent to using a more

(6.90)

general coordinate system [z% = 2%(z?)]. In this case, the equation becomes

d?z dzP dx?
po, Y4 _ 91
al7'2+ B ar dr 0, (6.91)

where I'“g, is the metric connection of g,3, which is still a flat metric but not

the Minkowski metric 7,3. The additional terms involving I'® 3, which appear, are
inertial forces.

The principle of equivalence requires that gravitational forces, a well as inertial
forces, should be given by an appropriate I'“g,. In this case we can no longer
take the spacetime to be flat. The simplest generalization is to keep I'“g, as
the metric connection, but now take it to be the metric connection of a non-flat
metric. If we are to interpret the I'“g, as force terms, then it follows that we
should regard the g, as potentials. The field equations of Newtonian gravitation
consist of second-order partial differential equations in the potential ®. In an
analogous manner, we would expect that General Relativity also to involve second
order partial differential equations in the potentials g,g. The remaining task which
will allow us to build a relativistic theory of gravitation is to construct this set of
partial differential equations. We will do this shortly but first we must define a

quantity that quantifies spacetime curvature.
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6.6 The curvature tensor and geodesic deviation

So far we have used the local - flatness theorem to develop as much mathematics

on curved manifolds as possible without having to consider curvature explicitly.
In this section we will make a precise mathematical definition of curvature and
discuss the remaining tools needed to derive the Einstein field equations.

It is important to distinguish two different kinds of curvature: intrinsic and
extrinsic. Consider for example a cylinder. Since a cylinder is round in one direc-
tion, one thinks of it as curved. It is its extrinsic curvature i.e. the curvature it has
in relation to the flat three- dimensional space it is part of. On the other hand, a
cylinder can be made by rolling a flat piece of paper without tearing or crumpling
it, so the intrinsic geometry is that of the original paper i.e. it is flat. This means
that the distance between any two points is the same as it was in the original
paper. Also parallel lines remain parallel when continued; in fact all of Euclid’s
axioms hold for the surface of a cylinder. A 2D ant confined to that surface would
decide that it was flat; only that the global topology is funny!

It is clear therefore that when we talk of the curvature of spacetime, we talk of
its intrinsic curvature since the worldlines [ geodesics | of particles are confined to
remain in spacetime.

The cylinder, as we have just seen is intrinsically flat; a sphere, on the other
hand, has an intrinsically curved surface. To see this, consider the surface of a
sphere [ or balloon | in which two neighboring lines begin at A and B perpendicular
to the equator, and hence are parallel. When continued as locally straight lines
they follow the arc of great circles, and the two lines meet at the pole P. So parallel
lines, when continued, do not remain parallel, so the space is not flat.

There is an even more striking illustration of the curvature of the surface of a
sphere. Consider, first, a flat space. Let us take a closed path starting at A then
going to B and C and then back to A. Let’s parallel transport a vector around this
loop. The vector finally drawn at A is, of course, parallel to the original one [ see
Figure 6.2 |. A completely different thing happens on the surface of a sphere! This

time the vector is rotated through 90 degrees! [ see the balloon example |. We will
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/

A

B

%
%

C

Figure 6.2: Parallel transport around a closed loop in flat space.

80

now use parallel transport around a closed loop in curved space to define curvature

in that space.

6.6.1 The curvature tensor

Imagine in our manifold a very small closed loop whose four sides are the coordinate

lines 2! = a, 2! = a + da, 2> = b, 2% = b+ db.

A vector V defined at A is parallel transported to B. From the parallel trans-

port law
VoV=0 = 66\;“ =-I*,ve,
it follows that at B the vector has components
B 8Va
Ve(B) = A+ [ S
= V(B) = VA4)-— / , TouVidat

where the notation “z? = 0” under the integral denotes the path AB.

transport from B to C' to D gives
VeC)=veB) - [ TaVide?,
zl=a+da

and

V(D) = V(C) + / oy TV

(6.92)

(6.93)

Similar

(6.94)

(6.95)

The integral in the last equation has a different sign because of the direction of

transport from C to D is in the negative x! direction.
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x2=b + &b

Figure 6.3: Parallel transport around a closed loop ABCD.

Similarly, the completion of the loop gives

V(Afpina) = V(D) [, Vida? . (6.96)

zl=qa

The net change in V*(A) is a vector V', found by adding (6.93)- (6.96).
oV = Va(Afinal) - Va(Ainitial)
= [, ravias- | Tt
I, Vhdae' — I Vida' . 6.97
/;);2:b+5b N (6.97)
To lowest order we get
sV = —/b b (I%,aV™) da?
a+da 0 o
+ / b (0,0 V") da’
0 0

dadb [—@ (FO‘HQV“) + @ (FO‘MV“) . (698)

Q

This involves derivatives of I''s and of V'%. The derivatives of V¢ can be eliminated
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using for example

ovH o
S = eV (6.99)
This gives
5‘/04 = 5@(51) [Faul’Q — Fauzl + Paygl—wul — Fayll—wug] VM . (6100)

To obtain this, one needs to relabel dummy indices in the terms quadratic in I'.

Notice that this just turns out to be a number times VV# summed on p. Now the
indices 1 and 2 appear because the path was chosen to go along those coordinates.
It is antisymmetric in 1 and 2 because the change 0V * would have the opposite
sign if one went around the loop in the opposite direction.

If we use general coordinate lines 27 and 2, we find
OV =06a0b [T on —T%0n0 + TN 0o — T 0 VL (6.101)
Defining
Rau)\g = Fa!w,)\ — Fau)\p + Fal,)\]:w!w — FO‘WF”M (6102)

we can write

SV = §adbR® 5, VI W W . (6.103)

R®g,, are the components of a 1/3 tensor. This tensor is called the Riemann

curvature tensor.

6.6.2 Properties of the Riemann curvature tensor

Recall that the Riemann tensor is
R =10 — T30 + 19,17, — 15,175, . (6.104)
In a local inertial frame we have I'*,,, = 0, so in this frame
R, =1, — T, . (6.105)

Now

« 1 (7
% = 59 (955 + Goup = Gpns) (6.106)
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SO
I = %gaé (958,00 + Gov,81 — Ypvou) (6.107)
since ga‘s,u = ( i.e the first derivative of the metric vanishes in a local inertial frame.
Hence
a L s
R = 29 (988,00 + Gov,80 — 9Bv.su — 9684w — Jou.pv + Ipusw) - (6.108)

Using the fact that partial derivatives always commute so that gsg .. = 953, We

get
1

§ga6 <g51/ﬁu — 96u,8v + 9Bu,6v — gﬁu,&/) (6109)

in a local inertial frame. Lowering the index o with the metric we get

Raﬁw =

Raﬁ;w = ga)\RAﬁm/
1
= 55504 (géu,ﬂu — 9ou,pv + 9Bu,dv — gﬁu,éu) . (6110)

So in a local inertial frame the result is

1
Rapuw = 2 (9avu = Gaupv + 9Buav — Goviap) - (6.111)
We can use this result to discover what the symmetries of R,g,, are. It is easy to

show from the above result that
Raﬁuy - _Rﬁauu - _Raﬁyu = Ruyaﬂ (6112)

and

ROéﬁp/V + Rauﬁu + Rauyﬂ — 0 . (6113)

Thus R,p,. is antisymmetric on the final pair and second pair of indices, and
symmetric on exchange of the two pairs.

Since these last two equations are valid tensor equations, although they were
derived in a local inertial frame, they are valid in all coordinate systems.

We can use these two identities to reduce the number of independent compo-

nents of R,g,, from 256 to just 20.
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A flat manifold is one which has a global definition of parallelism: i.e. a vector
can be moved around parallel to itself on an arbitrary curve and will return to its

starting point unchanged. This clearly means that
Ry, =0, (6.114)

i.e. the manifold is flat [ EXERCISE 6.5: try a cylinder! ].
An important use of the curvature tensor comes when we examine the conse-

quences of taking two covariant derivatives of a vector field V:
Vo VgVt = V,(V¥p)
= (V“;ﬁ),a —+ F“MV";Q — Fﬂgavﬂ;g . (6115)

As usual we can simplify things by working in a local inertial frame. So in this

frame we get
VUVt = (VE),
= (Ve +T"5V"),
= V¥ + TV 5,V +TH VY, . (6.116)
The second term of this is zero in a local inertial frame, so we obtain
Vo VgV =V g+ T 5,V . (6.117)
Consider the same formula with the a and [ interchanged:

VgVaV“ = V“ﬂa + F“mﬁV” . (6.118)

If we subtract these we get the commutator of the covariant derivative operators

Va and Vg:
Vo,V VF = V,VgVF - VsV, VH
= (I—Wuﬁ,a - Fﬂya,,@) vy (6119)

The terms involving the second derivatives of V# drop out because V¥ .53 = V" 3,

[ partial derivatives commute |.
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Figure 6.4: Geodesic deviation

Since in a local inertial frame the Riemann tensor takes the form
Ry =T 50 — T as (6.120)

we get

[V, Vs VI = RF oV (6.121)

This is closely related to our original derivation of the Riemann tensor from parallel
transport around loops, because the parallel transport problem can be thought of
as computing, first the change of V in one direction, and then in another, followed

by subtracting changes in the reverse order.

6.7 Geodesic deviation

We have shown that in a curved space [ for example on the surface of a balloon |
parallel lines when extended do not remain parallel. We will now formulate this
mathematically in terms of the Riemann tensor.

Consider two geodesics with tangents V and V' that begin parallel and near
each other at points A and A’ [ see Figure 6.4 |. Let the affine parameter on the
geodesics be \. We define a connecting vector ¢ which reaches from one geodesic
to another, connecting points at equal intervals in .

To simplify things, let’s adopt a local inertial frame at A, in which the coordi-

nate ° points along the geodesics. Thus at A we have V'@ = §%,.
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The geodesic equation at A is

d?x”

d\?

a=0 (6.122)

since all the connection coefficients vanish at A. The connection does not vanish
at A’, so the equation of the geodesic at A’ is
d?z o
W‘A/ + F 00(14/) - O y (6123)

where again at A’ we have arranged the coordinates so that V* = §%;. But, since

A and A’ are separated by the connecting vector £ we have
I0(A”) = I%0,56" (6.124)

the right hand side being evaluated at A, so

d?x®

d\?

|4 = —T%0 56" . (6.125)

Now z%(A") — z*(A) = £ so

d2£o¢ B dea dea

T = | — e |4 = —T%0 5" . (6.126)

This then gives us an expression telling us how the components of £ change. Con-
sider now the full second covariant derivative Vv Vv&.

Now

VvVvE® = Vv (VvEY)

= (v + T (V) (6.127)

In a local inertial frame this is

d

VvVyE* = ﬁ(vvfa)

_ 4 (48 e s
- dA(dA+Fﬁ°§>

d2§a

= = + T%g0,06° (6.128)
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where everything is again evaluated at A. Using the result for % we get
VyVves = (Moo — oo5) €
= R%pt”
= R%,3VHVes (6.129)

since we have chosen V& = §%.

The final expression is frame invariant, so we have in any basis
VyVvE® = R%,,3VHVVEr . (6.130)

So geodesics in flat space maintain their separation; those in curved space don’t.

This is called the equation of geodesic deviation and it shows mathematically that

the tidal forces of a gravitational field can be represented by the curvature of

spacetime in which particles follow geodesics.

6.8 The Bianchi identities; Ricci and Einstein
tensors

In the last section we found that in a local inertial frame the Riemann tensor could

be written as
ROCBMV - % (gOéV,ﬂu - gau,ﬁy + gﬁu7o¢y - gﬂy’au) . (6131)
Differentiating with respect to z* we get
Raﬁ;w,/\ = % (gau,ﬂu)\ - ga,u,ﬁu/\ + g,@,u,cw/\ - gﬁu,au)\) . (6132)

From this equation, the symmetry g.s = gs» and the fact that partial derivatives

commute, it is easy to show that
Roguwy + Raprpw + Rapory =0 . (6.133)
This equation is valid in a local inertial frame, therefore in a general frame we get
Rapuvix + Rapapw + Rapuau = 0. (6.134)

This is a tensor equation, therefore valid in any coordinate system. It is called the

Bianchi identities, and will be very important for our work.
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6.8.1 The Ricci tensor

Before looking at the consequences of the Bianchi identities, we need to define the
Ricci tensor R,p:

Reag = R'ou5 = Rpa . (6.135)

It is the contraction of R¥,,3 on the first and third indices. Other contractions
would in principle also be possible: on the first and second, the first and fourth,
etc. But because R,g,, is antisymmetric on a and 3 and on p and v, all these con-
tractions either vanish or reduce to £R,g. Therefore the Ricci tensor is essentially
the only contraction of the Riemann tensor.

Similarly, the Ricci scalar is defined as

R = g" Ry = 9" 9*° Rapy - (6.136)

6.8.2 The Einstein Tensor

Let us apply the Ricci contraction to the Bianchi identities
9" [Rapuvir + Rapruw + Rapua) = 0. (6.137)

Since gag, = 0 and g*°,, = 0, we can take g** in and out of covariant derivatives
at will: We get:
Ruﬁuy;)\ + Ruﬁ)\u;y + RMBV)\;M =0. (6138)

Using the antisymmetry on the indices p and A we get
Rﬂﬂuv;/\ - RHB;M;V + Ruﬁw\;u ) (6-139)

SO

ng;A — RﬁA;y + RMQUAW =0. (6140)

These equations are called the contracted Bianchi identities.

Let us now contract a second time on the indices § and v:
9% [Rpux — Roxy + R gin] = 0. (6.141)

This gives
RVV;)\ — RVA;,/ + RMVV)\;M =0. (6.142)
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SO
R, —2R"), =0, (6.143)
or
2RMy,, — Rx=0. (6.144)
Since R,y = g'\R,,, we get
2R\ —1g"sR| =0. (6.145)
7

Raising the index \ with ¢* we get

(R — 19" R =0 (6.146)
Defining
G" = R" — 1g"R (6.147)
we get
G™., =0. (6.148)

The tensor G* is constructed only from the Riemann tensor and the metric, and

it is automatically divergence free as an identity. It is called the Einstein tensor,

since its importance for gravity was first understood by Einstein. We will see in

the next chapter that Einstein’s field equations for General Relativity are

,  8rG.__ .,
GH = o ™, (6.149)
where T is the stress-energy tensor.
The Bianchi Identities then imply
T4 =0, (6.150)

which is the conservation of energy and momentum.



