
Chapter 6

Curved spacetime and General
Relativity

6.1 Manifolds, tangent spaces and local inertial
frames

A manifold is a continuous space whose points can be assigned coordinates, the

number of coordinates being the dimension of the manifold [ for example a surface

of a sphere is 2D, spacetime is 4D ].

A manifold is differentiable if we can define a scalar field φ at each point which

can be differentiated everywhere. This is always true in Special Relativity and

General Relativity.

We can then define one - forms d̃φ as having components {φ,α ≡ ∂φ
∂xα} and

vectors V as linear functions which take d̃φ into the derivative of φ along a curve

with tangent V:

V
(

d̃φ
)

= ∇Vφ = φ,αV α =
dφ

dλ
. (6.1)

Tensors can then be defined as maps from one - forms and vectors into the reals [

see chapter 3 ].

A Riemannian manifold is a differentiable manifold with a symmetric metric

tensor g at each point such that

g (V,V) > 0 (6.2)

for any vector V, for example Euclidian 3D space.
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If however g (V,V) is of indefinite sign as it is in Special and General Relativity

it is called Pseudo - Riemannian.

For a general spacetime with coordinates {xα}, the interval between two neigh-

boring points is

ds2 = gαβdxαdxβ . (6.3)

In Special Relativity we can choose Minkowski coordinates such that gαβ = ηαβ

everywhere. This will not be true for a general curved manifold. Since gαβ is

a symmetric matrix, we can always choose a coordinate system at each point

x0 in which it is transformed to the diagonal Minkowski form, i.e. there is a

transformation

Λᾱ
β ≡

∂xᾱ

∂xβ
(6.4)

such that

gᾱβ̄(x0) = ηᾱβ̄ =











−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











. (6.5)

Note that the sum of the diagonal elements is conserved; this is the signature of

the metric [ +2 ].

In general Λᾱ
β will not diagonalize gαβ at every point since there are ten func-

tions gαβ(x) and only four transformation functions X ᾱ(xβ).

We can also choose Λᾱ
β so that the first derivatives of the metric vanishes at

x0 i.e.
∂gαβ

∂xγ
= 0 (6.6)

for all α, β and γ. This implies

gαβ(xµ) = ηαβ + O[(xµ)2] . (6.7)

That is, the metric near x0 is approximately that of Special Relativity, differences

being of second order in the coordinates. This corresponds to the local inertial

frame whose existence was deduced from the equivalence principle.

In summary we can define a local inertial frame to be one where

gαβ(x0) = ηαβ (6.8)
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for all α, β, and

gαβ,γ(x0) = 0 (6.9)

for all α, β, γ. However

gαβ,γµ(x0) $= 0 (6.10)

for at least some values of α. β, γ and µ.

It reflects the fact that any curved space has a flat tangent space at every point,

although these tangent spaces cannot be meshed together into a global flat space.

Recall that straight lines in a flat spacetime are the worldlines of free particles;

the absence of first derivative terms in the metric of a curved spacetime will mean

that free particles are moving on lines that are locally straight in that coordinate

system. This makes such coordinates very useful for us, since the equations of

physics will be nearly as simple as they are in flat spacetime, and if they are tensor

equations they will be valid in every coordinate system.

6.2 Covariant derivatives and Christoffel sym-
bols

In Minkowski spacetime with Minkowski coordinates (t, x, y, z) the derivative of a

vector V = V αeα is just
∂V

∂xβ
=
∂V α

∂xβ
eα , (6.11)

since the basis vectors do not vary. In a general spacetime with arbitrary coordi-

nates, eα which vary from point to point so

∂V

∂xβ
=
∂V α

∂xβ
eα + V α∂eα

∂xβ
. (6.12)

Since ∂eα/∂xβ is itself a vector for a given β it can be written as a linear combi-

nation of the bases vectors:
∂eα

∂xβ
= Γµ

αβeµ . (6.13)

The Γ’s are called Christoffel symbols [ or the metric connection ]. Thus we have:

∂V

∂xβ
=
∂V α

∂xβ
eα + V αΓµ

αβeµ , (6.14)
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so
∂V

∂xβ
=

(

∂V α

∂xβ
eα + V µΓα

µβ

)

eα . (6.15)

Thus we can write
∂V

∂xβ
= V α

;βeα , (6.16)

where

V α
;β = V α

,β + V µΓα
µβ . (6.17)

Let us now prove that V α
;β are the components of a 1/1 tensor. Remember in

section 3.5 we found that V α
,β was only a tensor under Poincaré transformations

in Minkowski space with Minkowski coordinates. V α
;β is the natural generalization

for a general coordinate transformation.

Writing Λᾱ
β ≡ ∂xᾱ

∂xβ , we have:

V ᾱ
;β̄ = V ᾱ

,β̄ + V µ̄Γᾱ
µ̄β̄

= Λµ
β̄
∂

∂xµ
(Λᾱ

νV
ν) + V µ̄Γᾱ

µ̄β̄

= Λµ
β̄Λᾱ

ν
∂V ν

∂xµ
+ V νΛµ

β̄

∂Λᾱ
ν

∂xµ
+ V µ̄Γᾱ

µ̄β̄ . (6.18)

Now
∂eµ̄

∂xβ̄
= Γλ̄

µ̄β̄eλ̄ , (6.19)

therefore
∂eµ̄

∂xβ̄
w̃ᾱ = Γλ̄

µ̄β̄eλ̄w̃
ᾱ = Γλ̄

µ̄β̄δ
ᾱ

λ̄ = Γᾱ
µ̄β̄ , (6.20)

so we obtain:

V ᾱ
;β̄ = Λµ

β̄Λᾱ
ν
∂V ν

∂xµ
+ V νΛµ

β̄

∂Λᾱ
ν

∂xµ
+ V µ̄ ∂eµ̄

∂xβ̄
w̃ᾱ

= Λµ
β̄Λᾱ

ν
∂V ν

∂xµ
+ V νΛµ

β̄

∂Λᾱ
ν

∂xµ
+ Λµ̄

γV
γΛᾱ

δw̃
δ ∂eµ̄

∂xβ̄

= Λµ
β̄Λᾱ

ν
∂V ν

∂xµ
+ V νΛµ

β̄

∂Λᾱ
ν

∂xµ
+ Λµ̄

γV
γΛᾱ

δw̃
δΛε

β̄

∂

∂xε
(Λν

µ̄eν)

= Λµ
β̄Λᾱ

ν
∂V ν

∂xµ
+ V νΛµ

β̄
∂Λᾱ

ν

∂xµ
+ Λµ̄

γV
γΛᾱ

δw̃
δΛε

β̄Λν
µ̄
∂eν

∂xε

+ Λµ̄
γV

γΛᾱ
δw̃

δΛε
β̄eν

∂Λν
µ̄

∂xε
(6.21)
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Now using Λν
µ̄Λµ̄

γ = δν
γ, w̃δeν = δδ

ν and Λᾱ
ν

∂Λν
µ̄

∂xε = −Λν
µ̄

∂Λᾱ
ν

∂xε we obtain:

V ᾱ
;β̄ = Λᾱ

νΛ
µ

β̄
∂V ν

∂xµ
+ V νΛµ

β̄
∂Λᾱ

ν

∂xµ
+ Λᾱ

δΛ
ε
β̄V νΓδ

νε − Λµ
β̄
∂Λᾱ

ν

∂xµ
V ν

= Λᾱ
νΛ

µ
β̄

∂V ν

∂xµ
+ Λᾱ

δΛ
ε
β̄V νΓδ

νε

= Λᾱ
νΛ

µ
β̄

(

∂V ν

∂xµ
+ V δΓν

δµ

)

, (6.22)

so

V ᾱ
;β̄ = Λᾱ

νΛ
µ

β̄V ν
;µ . (6.23)

We have shown that V α
;β are indeed the components of a 1/1 tensor. We write

this tensor as

∇V = V α
;βeα ⊗ w̃β . (6.24)

It is called the covariant derivative of V. Using a Cartesian basis, the components

are just V α
,β, but this is not true in general; however for a scalar φ we have:

∇αφ ≡ φ;α =
∂φ

∂xα
, ∇φ = d̃φ , (6.25)

since scalars do not depend on basis vectors.

Writing Γα
µβ = ∂eµ

∂xβ w̃α, we can find the transformation law for the components

of the Christoffel symbols.

Γα
µβ =

∂eµ

∂xβ
w̃α = Λα

γ̄w̃
γ̄Λσ̄

β
∂

∂xσ̄

(

Λλ̄
µeλ̄

)

= Λα
γ̄Λ

σ̄
βΛλ̄

µw̃
γ̄ ∂eλ̄

∂xσ̄
+ Λα

γ̄Λ
σ̄

βw̃
γ̄eλ̄

∂Λλ̄
µ

∂xσ̄

= Λα
γ̄Λ

σ̄
βΛλ̄

µΓ
γ̄

λ̄σ̄ + Λα
λ̄Λ

σ̄
β
∂Λλ̄

µ

∂xσ̄
(6.26)

This is just

Γα
µβ =

∂xα

∂xγ̄

∂xσ̄

∂xβ

∂xλ̄

∂xµ
Γγ̄

λ̄σ̄ +
∂xα

∂xλ

∂2xλ̄

∂xβ∂xµ
. (6.27)

We can calculate the covariant derivative of a one - form p̃ by using the fact that

p̃(V) is a scalar for any vector V:

φ = pαV α . (6.28)
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We have

∇βφ = φ,β =
∂pα

∂xβ
V α + pα

∂V α

∂xβ

=
∂pα

∂xβ
V α + pαV α

;β − pαV µΓα
µβ

=

(

∂pα

∂xβ
− pµΓ

µ
αβ

)

V α + pαV α
;β . (6.29)

Since ∇βφ and V α
;β are tensors, the term in the parenthesis is a tensor with

components:

pα;β = pα,β − pµΓ
µ

αβ . (6.30)

We can extend this argument to show that

∇βTµν ≡ Tµν;β = Tµν,β − TανΓ
α

µβ − ΓµαΓα
νβ ,

∇βT µν ≡ T µν
;β = T µν

;β + T ανΓµ
αβ + T µαΓν

αβ ,

∇βT µ
ν ≡ T µ

ν;β = T µ
ν,β + T α

νΓ
µ

αβ − T µ
αΓα

νβ . (6.31)

6.3 Calculating Γαβγ from the metric

Since V α
;β is a tensor we can lower the index α using the metric tensor:

Vα;β = gαµV
µ
;β . (6.32)

But by linearity, we have:

Vα;β = (gαµV
µ);β = gαµ;βV µ + gαµV µ

;β . (6.33)

So consistency requires gαµ;βV µ = 0. Since V is arbitrary this implies that

gαµ;β = 0 . (6.34)

Thus the covariant derivative of the metric is zero in every frame.

We next prove that Γα
βγ = Γα

γβ [ i.e. symmetric in β and γ ]. In a general

frame we have for a scalar field φ:

φ;βα = φ,β;α = φ,βα − Γγ
βαφ,γ . (6.35)
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in a local inertial frame, this is just φ,βα ≡ ∂2φ
∂xβ∂xα , which is symmetric in β and α.

Thus it must also be symmetric in a general frame. Hence Γγ
αβ is symmetric in β

and α:

Γγ
αβ = Γγ

βα . (6.36)

We now use this to express Γγ
αβ in terms of the metric. Since gαβ;µ = 0, we have:

gαβ,µ = Γν
αµgνβ + Γν

βµgαν . (6.37)

By writing different permutations of the indices and using the symmetry of Γγ
αβ ,

we get

gαβ,µ + gαµ,β − gβµ,α = 2gανΓ
ν
βµ . (6.38)

Multiplying by 1
2g

αγ and using gαγgαν = δγ
ν gives

Γγ
βµ = 1

2g
αγ (gαβ,µ + gαµ,β − gβµ,α) . (6.39)

Note that Γγ
βµ is not a tensor since it is defined in terms of partial derivatives.

In a local inertial frame Γγ
βµ = 0 since gαβ,µ = 0. We will see later the

significance of this result.

6.4 Tensors in polar coordinates

The covariant derivative differs from partial derivatives even in flat spacetime if

one uses non - Cartesian coordinates. This corresponds to going to a non - inertial

frame. To illustrate this we will focus on two dimensional Euclidian space with

Cartesian coordinates (x1 = x, x2 = y) and polar coordinates (x1̄ = r, x2̄ = θ).

The coordinates are related by

x = r cos θ , y = r sin θ , θ = tan−1
(

y
x

)

, r =
(

x2 + y2
)1/2

. (6.40)

For neighboring points we have

dr =
∂r

∂x
dx +

∂r

∂y
dy = cos θdx + sin θdy , (6.41)

and

dθ =
∂θ

∂x
dx +

∂θ

∂y
dy = −

1

r
sin θdx +

1

r
cos θdy . (6.42)
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We can represent this by a transformation matrix Λᾱ
β:

dxᾱ = Λᾱ
βdxβ , (6.43)

where

Λᾱ
β =

(

cos θ sin θ
−1

r sin θ 1
r cos θ

)

. (6.44)

Any vector components must transform in the same way.

For any scalar field φ, we can define a one - form:

d̃φ→
(

∂φ

∂r
,
∂φ

∂θ

)

. (6.45)

We have

∂φ

∂θ
=

∂φ

∂x

∂x

∂θ
+
∂φ

∂y

∂y

∂θ

= −r sin θ
∂φ

∂x
+ r cos θ

∂φ

∂y
, (6.46)

and

∂φ

∂r
=

∂φ

∂x

∂x

∂r
+
∂φ

∂y

∂y

∂r

= cos θ
∂φ

∂x
+ sin θ

∂φ

∂y
, (6.47)

This transformation can be represented by another matrix Λα
β̄:

∂φ

∂xβ̄
= Λα

β̄
∂φ

∂xα
, (6.48)

where

Λα
β̄ =

(

cos θ − r sin θ
sin θ r cos θ

)

. (6.49)

Any one - form components must transform in the same way.

The matrices Λᾱ
β and Λα

β̄ are different but related:

Λᾱ
γΛ

γ
β̄ =

(

cos θ sin θ
−1

r sin θ 1
r cos θ

)(

cos θ − r sin θ
sin θ r cos θ

)

=

(

1 0
0 1

)

. (6.50)



CHAPTER 6. CURVED SPACETIME AND GR 73

This is just what you would expect since in general Λᾱ
γΛγ

β̄ = δᾱ
β̄.

The basis vectors and basis one - forms are

er = Λα
reα = Λx

rex + Λy
rey = cos θex + sin θey ,

eθ = Λα
θeα = Λx

θex + Λy
θey = −r sin θex + r cos θey , (6.51)

and

w̃r = d̃r = Λr
αw̃

α = Λr
xw̃

x + Λr
yw̃

y = cos θw̃x + sin θw̃y ,

w̃θ = d̃θ = Λθ
αw̃

α = Λθ
xw̃

x + Λθ
yw̃

y = −1
r sin θw̃x + 1

r cos θw̃y . (6.52)

Note that the basis vectors change from point to point in polar coordinates and

need not have unit length so they do not form an orthonormal basis:

|er| = 1 , |eθ| = r , |w̃r| = 1 , |w̃θ| = 1
r . (6.53)

The inverse metric tensor is:

gᾱβ̄ =

(

1 0
0 r−2

)

(6.54)

so the components of the vector gradient dφ of a scalar field φ are:

(dφ)r = gαrφ,α = grrφ,r + grθφ,θ =
∂φ

∂r
,

(dφ)θ = gαθφ,α = grθφ,r + gθθφ,θ =
1

r2

∂φ

∂θ
. (6.55)

This is exactly what we would expect from our understanding of normal vector

calculus.

We also have:
∂er

∂r
=

∂

∂r
(cos θex + sin θey) = 0 , (6.56)

and
∂er

∂θ
=

1

r
eθ ,

∂eθ

∂r
=

1

r
eθ ,

∂eθ

∂θ
= −rer . (6.57)

Since
∂eᾱ

∂xβ̄
= Γµ̄

ᾱβ̄eµ̄ , (6.58)
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we can work out all the components of the Christoffel symbols:

Γθ
rθ =

1

r
, Γθ

θr =
1

r
, Γr

θθ = −r , (6.59)

and all other components are zero.

Alternatively, we can work out these components from the metric [ EXERCISE

]:

Γᾱ
β̄γ̄ = 1

2g
ᾱδ̄
[

gβ̄δ̄,γ̄ + gγ̄δ̄,β̄ − gβ̄γ̄,δ̄

]

. (6.60)

In fact this is the best way of working out the components of Γᾱ
β̄γ̄, and it is the

way we will adopt in General Relativity.

Finally we can check that all the components of gᾱβ̄;γ̄ = 0 as requited. For

example

gθθ;r = gθθ,r − Γµ̄
θrgθµ̄ − Γµ̄

θrgµ̄θ

= (r2),r −
2

r
(r2) = 0 . (6.61)

6.5 Parallel transport and geodesics

A vector field V is parallel transported along a curve with tangent

U =
dx

dλ
, (6.62)

where λ is the parameter along the curve [ usually taken to be the proper time τ

if the curve is timelike ] if and only if

dV α

dλ
= 0 (6.63)

in an inertial frame. Since

dV α

dλ
=
∂V α

∂xβ

dxβ

dλ
= UβV α

,β , (6.64)

in a general frame the condition becomes:

UβV α
;β = 0 , (6.65)

i.e. we just replace the partial derivatives (,) with a covariant derivative (;). This is

called “the comma goes to semicolon” rule, i.e. work things out in a local inertial
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U

V
Timelike curve

Figure 6.1: Parallel transport of a vector V along a timelike curve with tangent
U.

frame and if it is a tensor equation it will be valid in all frames. The curve is a

geodesic if it parallel transports its own tangent vector:

UβUα
;β = 0 . (6.66)

This is the closest we can get to defining a straight line in a curved space. In flat

space a tangent vector is everywhere tangent only for a straight line. Now

UβUα
;β = 0 ⇒ UβUα

,β + Γα
µβUµUβ = 0 . (6.67)

Since Uα = dxα

dλ and d
dλ = Uβ ∂

∂xβ we can write this as

d2xα

dλ2
+ Γα

µβ
dxµ

dλ

dxβ

dλ
= 0 . (6.68)

This is the geodesic equation. It is a second order differential equation for xα(λ),

so one gets a unique solution by specifying an initial position x0 and velocity U0.

6.5.1 The variational method for geodesics

We now apply the variational techniques to compute the geodesics for a given

metric.

For a curved spacetime, the proper time dτ is defined to be

dτ 2 = −
1

c2
ds2 = −

1

c2
gαβdxαdxβ . (6.69)
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Remember in flat spacetime it was just

dτ 2 = −
1

c2
ηαβdxαdxβ . (6.70)

Therefore the proper time between two points A and B along an arbitrary timelike

curve is

τAB =
∫ B

A
dτ =

∫ B

A

dτ

dλ
dλ

=
∫ B

A

1

c

[

−gαβ(x)
dxα

dλ

dxβ

dλ

]1/2

dλ , (6.71)

so we can write the Lagrangian as

L(xα, ẋα,λ) =
1

c

[

−gαβ(x)
dxα

dλ

dxβ

dλ

]1/2

, (6.72)

and the action becomes

A = τAB =
∫ B

A
L(xα, ẋα,λ)dλ . (6.73)

Extremizing the action we get the Euler - Lagrange equations:

∂L
∂xα

=
d

dλ

(

∂L
∂ẋα

)

. (6.74)

Now
∂L
∂xα

= −
1

2c

(

−gµν
dxµ

dλ

dxν

dλ

)−1/2
∂gβγ

∂xα

dxβ

dλ

dxγ

dλ
(6.75)

and
∂L
∂ẋα

= −
1

2c

(

−gµν
dxµ

dλ

dxν

dλ

)−1/2

(2)gαβ
dxβ

dλ
. (6.76)

Since
1

c

(

−gαβ
dxα

dλ

dxβ

dλ

)1/2

=
dτ

dλ
(6.77)

we get
∂L
∂xα

= −
1

2

dλ

dτ

∂gβγ

∂xα

dxβ

dλ

dxγ

dλ
(6.78)

and
∂L
∂ẋα

= −
dλ

dτ
gαβ

dxβ

dλ
= −gαβ

dxβ

dτ
, (6.79)
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so the Euler - Lagrange equations become:

1

2

dλ

dτ

∂gβγ

∂xα

dxβ

dλ

dxγ

dλ
=

d

dλ

[

gαβ
dxβ

dτ

]

. (6.80)

Multiplying by dλ
dτ we obtain

1

2

∂gβγ

∂xα

dxβ

dτ

dxγ

dτ
=

d

dτ

[

gαβ
dxβ

dτ

]

. (6.81)

Using
dgαβ

dτ
=
∂gαβ

∂xγ

dxγ

dτ
, (6.82)

we get
1

2

∂gβγ

∂xα

dxβ

dτ

dxγ

dτ
= gαβ

d2xβ

dτ 2
+
∂gαβ

∂xγ

dxγ

dτ

dxβ

dτ
. (6.83)

Multiplying by gδα gives

d2xδ

dτ 2
= −gδα

[

∂gαβ

∂xγ
−

1

2

∂gβγ

∂xα

]

dxβ

dτ

dxγ

dτ
. (6.84)

Now

∂gαβ

∂xγ

dxβ

dτ

dxγ

dτ
=

1

2

[

∂gαβ

∂xγ

dxβ

dτ

dxγ

dτ
+
∂gαβ

∂xγ

dxγ

dτ

dxβ

dτ

]

=
1

2

[

∂gαβ

∂xγ
+
∂gαγ

∂xβ

]

dxβ

dτ

dxγ

dτ
. (6.85)

Using the above result gives us

d2xδ

dτ 2
= −

1

2
gδα [gαβ,γ + gαγ,β − gβγ,α]

dxβ

dτ

dxγ

dτ

= −Γδ
βγ

dxβ

dτ

dxγ

dτ
, (6.86)

so we get the geodesic equation again

d2xδ

dτ 2
+ Γδ

βγ
dxβ

dτ

dxγ

dτ
= 0 . (6.87)

This is the equation of motion for a particle moving on a timelike geodesic in curved

spacetime. Note that in a local inertial frame i.e. where Γδ
βγ = 0, the equation

reduces to
d2xδ

dτ 2
= 0 , (6.88)
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which is the equation of motion for a free particle.

The geodesic equation preserves its form if we parameterize the curve by any

other parameter λ such that

d2λ

dτ 2
= 0 ⇒ λ = aτ + b (6.89)

for constants a and b. A parameter which satisfies this condition is said to be

affine.

6.5.2 The principle of equivalence again

In Special Relativity, in a coordinate system adapted for an inertial frame, namely

Minkowski coordinates, the equation for a test particle is:

d2xα

dτ 2
= 0 . (6.90)

If we use a non - inertial frame of reference, then this is equivalent to using a more

general coordinate system [xᾱ = xᾱ(xβ)]. In this case, the equation becomes

d2xα

dτ 2
+ Γα

βγ
dxβ

dτ

dxγ

dτ
= 0 , (6.91)

where Γα
βγ is the metric connection of gαβ, which is still a flat metric but not

the Minkowski metric ηαβ . The additional terms involving Γα
βγ which appear, are

inertial forces.

The principle of equivalence requires that gravitational forces, a well as inertial

forces, should be given by an appropriate Γα
βγ. In this case we can no longer

take the spacetime to be flat. The simplest generalization is to keep Γα
βγ as

the metric connection, but now take it to be the metric connection of a non - flat

metric. If we are to interpret the Γα
βγ as force terms, then it follows that we

should regard the gαβ as potentials. The field equations of Newtonian gravitation

consist of second - order partial differential equations in the potential Φ. In an

analogous manner, we would expect that General Relativity also to involve second

order partial differential equations in the potentials gαβ. The remaining task which

will allow us to build a relativistic theory of gravitation is to construct this set of

partial differential equations. We will do this shortly but first we must define a

quantity that quantifies spacetime curvature.
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6.6 The curvature tensor and geodesic deviation

So far we have used the local - flatness theorem to develop as much mathematics

on curved manifolds as possible without having to consider curvature explicitly.

In this section we will make a precise mathematical definition of curvature and

discuss the remaining tools needed to derive the Einstein field equations.

It is important to distinguish two different kinds of curvature: intrinsic and

extrinsic. Consider for example a cylinder. Since a cylinder is round in one direc-

tion, one thinks of it as curved. It is its extrinsic curvature i.e. the curvature it has

in relation to the flat three - dimensional space it is part of. On the other hand, a

cylinder can be made by rolling a flat piece of paper without tearing or crumpling

it, so the intrinsic geometry is that of the original paper i.e. it is flat. This means

that the distance between any two points is the same as it was in the original

paper. Also parallel lines remain parallel when continued; in fact all of Euclid’s

axioms hold for the surface of a cylinder. A 2D ant confined to that surface would

decide that it was flat; only that the global topology is funny!

It is clear therefore that when we talk of the curvature of spacetime, we talk of

its intrinsic curvature since the worldlines [ geodesics ] of particles are confined to

remain in spacetime.

The cylinder, as we have just seen is intrinsically flat; a sphere, on the other

hand, has an intrinsically curved surface. To see this, consider the surface of a

sphere [ or balloon ] in which two neighboring lines begin at A and B perpendicular

to the equator, and hence are parallel. When continued as locally straight lines

they follow the arc of great circles, and the two lines meet at the pole P. So parallel

lines, when continued, do not remain parallel, so the space is not flat.

There is an even more striking illustration of the curvature of the surface of a

sphere. Consider, first, a flat space. Let us take a closed path starting at A then

going to B and C and then back to A. Let’s parallel transport a vector around this

loop. The vector finally drawn at A is, of course, parallel to the original one [ see

Figure 6.2 ]. A completely different thing happens on the surface of a sphere! This

time the vector is rotated through 90 degrees! [ see the balloon example ]. We will
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B
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C
Figure 6.2: Parallel transport around a closed loop in flat space.

now use parallel transport around a closed loop in curved space to define curvature

in that space.

6.6.1 The curvature tensor

Imagine in our manifold a very small closed loop whose four sides are the coordinate

lines x1 = a, x1 = a + δa, x2 = b, x2 = b + δb.

A vector V defined at A is parallel transported to B. From the parallel trans-

port law

∇eV = 0 ⇒
∂V α

∂x1
= −Γα

µ1V
µ , (6.92)

it follows that at B the vector has components

V α(B) = V α(A) +
∫ B

A

∂V α

∂x1
dx1

⇒ V α(B) = V α(A) −
∫

x2=b
Γα

µ1V
µdx1 , (6.93)

where the notation “x2 = b” under the integral denotes the path AB. Similar

transport from B to C to D gives

V α(C) = V α(B) −
∫

x1=a+δa
Γα

µ2V
µdx2 , (6.94)

and

V α(D) = V α(C) +
∫

x1=b+δb
Γα

µ1V
µdx1 . (6.95)

The integral in the last equation has a different sign because of the direction of

transport from C to D is in the negative x1 direction.
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Figure 6.3: Parallel transport around a closed loop ABCD.

Similarly, the completion of the loop gives

V α(Afinal) = V α(D) +
∫

x1=a
Γα

µ2V
µdx2 . (6.96)

The net change in V α(A) is a vector δV α, found by adding (6.93) - (6.96).

δV α = V α(Afinal) − V α(Ainitial)

=
∫

x1=a
Γα

µ2V
µdx2 −

∫

x1=a+δa
Γα

µ2V
µdx2

+
∫

x2=b+δb
Γα

µ1V
µdx1 −

∫

x2=b
Γα

µ1V
µdx1 . (6.97)

To lowest order we get

δV α = −
∫ b+δb

b
δa

∂

∂x1
(Γα

µ2V
mu) dx2

+
∫ a+δa

a
δb

∂

∂x2
(Γα

µ1V
µ) dx1

≈ δaδb

[

−
∂

∂x1
(Γα

µ2V
µ) +

∂

∂x2
(Γα

µ1V
µ)

]

. (6.98)

This involves derivatives of Γ’s and of V α. The derivatives of V α can be eliminated
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using for example
∂V µ

∂x1
= −Γµ

α1V
α . (6.99)

This gives

δV α = δaδb [Γα
µ1,2 − Γα

µ2,1 + Γα
ν2Γ

ν
µ1 − Γα

ν1Γ
ν
µ2]V

µ . (6.100)

To obtain this, one needs to relabel dummy indices in the terms quadratic in Γ.

Notice that this just turns out to be a number times V µ summed on µ. Now the

indices 1 and 2 appear because the path was chosen to go along those coordinates.

It is antisymmetric in 1 and 2 because the change δV α would have the opposite

sign if one went around the loop in the opposite direction.

If we use general coordinate lines xσ and xλ, we find

δV α = δaδb [Γα
µσ,λ − Γα

µλ,σ + Γα
νλΓ

ν
µσ − Γα

νσΓ
ν
µλ] V

µ . (6.101)

Defining

Rα
µλσ ≡ Γα

µσ,λ − Γα
µλ,σ + Γα

νλΓ
ν
µσ − Γα

νσΓν
µλ (6.102)

we can write

δV α = δaδbRα
µλσV µw̃λw̃σ . (6.103)

Rα
βµν are the components of a 1/3 tensor. This tensor is called the Riemann

curvature tensor.

6.6.2 Properties of the Riemann curvature tensor

Recall that the Riemann tensor is

Rα
βµν ≡ Γα

βν,µ − Γα
βµ,ν + Γα

σµΓσ
βν − Γα

σνΓ
σ

βµ . (6.104)

In a local inertial frame we have Γα
µν = 0, so in this frame

Rα
βµν = Γα

βν,µ − Γα
βµ,ν . (6.105)

Now

Γα
βν =

1

2
gαδ (gδβ,ν + gδν,β − gβν,δ) (6.106)
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so

Γα
βν,µ =

1

2
gαδ (gδβ,νµ + gδν,βµ − gβν,δµ) (6.107)

since gαδ
,µ = 0 i.e the first derivative of the metric vanishes in a local inertial frame.

Hence

Rα
βµν =

1

2
gαδ (gδβ,νµ + gδν,βµ − gβν,δµ − gδβ,µν − gδµ,βν + gβµ,δν) . (6.108)

Using the fact that partial derivatives always commute so that gδβ,νµ = gδβ,µν , we

get

Rα
βµν =

1

2
gαδ (gδν,βµ − gδµ,βν + gβµ,δν − gβν,δν) (6.109)

in a local inertial frame. Lowering the index α with the metric we get

Rαβµν = gαλR
λ

βνν

=
1

2
δδ

α (gδν,βµ − gδµ,βν + gβµ,δν − gβν,δν) . (6.110)

So in a local inertial frame the result is

Rαβµν =
1

2
(gαν,βµ − gαµ,βν + gβµ,αν − gβν,αµ) . (6.111)

We can use this result to discover what the symmetries of Rαβµν are. It is easy to

show from the above result that

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ (6.112)

and

Rαβµν + Rανβµ + Rαµνβ = 0 . (6.113)

Thus Rαβµν is antisymmetric on the final pair and second pair of indices, and

symmetric on exchange of the two pairs.

Since these last two equations are valid tensor equations, although they were

derived in a local inertial frame, they are valid in all coordinate systems.

We can use these two identities to reduce the number of independent compo-

nents of Rαβµν from 256 to just 20.
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A flat manifold is one which has a global definition of parallelism: i.e. a vector

can be moved around parallel to itself on an arbitrary curve and will return to its

starting point unchanged. This clearly means that

Rα
βµν = 0 , (6.114)

i.e. the manifold is flat [ EXERCISE 6.5: try a cylinder! ].

An important use of the curvature tensor comes when we examine the conse-

quences of taking two covariant derivatives of a vector field V:

∇α∇βV µ = ∇α (V µ
;β)

= (V µ
;β),α + Γµ

σαV σ
;β − Γµ

βαV µ
;σ . (6.115)

As usual we can simplify things by working in a local inertial frame. So in this

frame we get

∇α∇βV µ = (V µ
;β),α

= (V µ
,β + Γµ

νβV ν),α

= V µ
,βα + Γµ

νβ,αV ν + Γµ
νβV ν

,α . (6.116)

The second term of this is zero in a local inertial frame, so we obtain

∇α∇βV µ = V µ
,αβ + Γµ

νβ,αV ν . (6.117)

Consider the same formula with the α and β interchanged:

∇β∇αV µ = V µ
,βα + Γµ

να,βV ν . (6.118)

If we subtract these we get the commutator of the covariant derivative operators

∇α and ∇β:

[∇α,∇β]V µ = ∇α∇βV µ −∇β∇αV µ

= (Γµ
νβ,α − Γµ

να,β)V ν . (6.119)

The terms involving the second derivatives of V µ drop out because V µ
,αβ = V ν

,βα

[ partial derivatives commute ].
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Figure 6.4: Geodesic deviation

Since in a local inertial frame the Riemann tensor takes the form

Rµ
ναβ = Γµ

νβ,α − Γµ
να,β , (6.120)

we get

[∇α,∇β] V µ = Rµ
ναβV ν . (6.121)

This is closely related to our original derivation of the Riemann tensor from parallel

transport around loops, because the parallel transport problem can be thought of

as computing, first the change of V in one direction, and then in another, followed

by subtracting changes in the reverse order.

6.7 Geodesic deviation

We have shown that in a curved space [ for example on the surface of a balloon ]

parallel lines when extended do not remain parallel. We will now formulate this

mathematically in terms of the Riemann tensor.

Consider two geodesics with tangents V and V′ that begin parallel and near

each other at points A and A′ [ see Figure 6.4 ]. Let the affine parameter on the

geodesics be λ. We define a connecting vector ξ which reaches from one geodesic

to another, connecting points at equal intervals in λ.

To simplify things, let’s adopt a local inertial frame at A, in which the coordi-

nate x0 points along the geodesics. Thus at A we have V α = δα
0.



CHAPTER 6. CURVED SPACETIME AND GR 86

The geodesic equation at A is

d2xα

dλ2
|A = 0 (6.122)

since all the connection coefficients vanish at A. The connection does not vanish

at A′, so the equation of the geodesic at A′ is

d2xα

dλ2
|A′ + Γα

00(A
′) = 0 , (6.123)

where again at A′ we have arranged the coordinates so that V α = δα
0. But, since

A and A′ are separated by the connecting vector ξ we have

Γα
00(A

′) = Γα
00,βξ

β , (6.124)

the right hand side being evaluated at A, so

d2xα

dλ2
|A′ = −Γα

00,βξ
β . (6.125)

Now xα(A′) − xα(A) = ξα so

d2ξα

dλ2
=

d2xα

dλ2
|A′ −

d2xα

dλ2
|A = −Γα

00,βξ
β . (6.126)

This then gives us an expression telling us how the components of ξ change. Con-

sider now the full second covariant derivative ∇V∇Vξ.

Now

∇V∇Vξ
α = ∇V (∇Vξ

α)

=
d

dλ
(∇Vξ

α) + Γα
β0

(

∇Vξ
β
)

. (6.127)

In a local inertial frame this is

∇V∇Vξ
α =

d

dλ
(∇Vξ

α)

=
d

dλ

(

dξα

dλ
+ Γα

β0ξ
β

)

=
d2ξα

dλ
+ Γα

β0,0ξ
β , (6.128)
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where everything is again evaluated at A. Using the result for d2ξα

dλ2 we get

∇V∇Vξ
α = (Γα

β0,0 − Γα
00,β) ξβ

= Rα
00βξ

β

= Rα
µνβV µV νξβ , (6.129)

since we have chosen V α = δα
0.

The final expression is frame invariant, so we have in any basis

∇V∇Vξ
α = Rα

µνβV µV νξβ . (6.130)

So geodesics in flat space maintain their separation; those in curved space don’t.

This is called the equation of geodesic deviation and it shows mathematically that

the tidal forces of a gravitational field can be represented by the curvature of

spacetime in which particles follow geodesics.

6.8 The Bianchi identities; Ricci and Einstein
tensors

In the last section we found that in a local inertial frame the Riemann tensor could

be written as

Rαβµν = 1
2 (gαν,βµ − gαµ,βν + gβµ,αν − gβν,αµ) . (6.131)

Differentiating with respect to xλ we get

Rαβµν,λ = 1
2 (gαν,βµλ − gαµ,βνλ + gβµ,ανλ − gβν,αµλ) . (6.132)

From this equation, the symmetry gαβ = gβα and the fact that partial derivatives

commute, it is easy to show that

Rαβµν,λ + Rαβλµ,ν + Rαβνλ,µ = 0 . (6.133)

This equation is valid in a local inertial frame, therefore in a general frame we get

Rαβµν;λ + Rαβλµ;ν + Rαβνλ;µ = 0 . (6.134)

This is a tensor equation, therefore valid in any coordinate system. It is called the

Bianchi identities, and will be very important for our work.
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6.8.1 The Ricci tensor

Before looking at the consequences of the Bianchi identities, we need to define the

Ricci tensor Rαβ :

Rαβ = Rµ
αµβ = Rβα . (6.135)

It is the contraction of Rµ
ανβ on the first and third indices. Other contractions

would in principle also be possible: on the first and second, the first and fourth,

etc. But because Rαβµν is antisymmetric on α and β and on µ and ν, all these con-

tractions either vanish or reduce to ±Rαβ . Therefore the Ricci tensor is essentially

the only contraction of the Riemann tensor.

Similarly, the Ricci scalar is defined as

R = gµνRµν = gµνgαβRαβµν . (6.136)

6.8.2 The Einstein Tensor

Let us apply the Ricci contraction to the Bianchi identities

gαµ [Rαβµν;λ + Rαβλµ;ν + Rαβνλ;µ] = 0 . (6.137)

Since gαβ;µ = 0 and gαβ
;µ = 0, we can take gαµ in and out of covariant derivatives

at will: We get:

Rµ
βµν;λ + Rµ

βλµ;ν + Rµ
βνλ;µ = 0 . (6.138)

Using the antisymmetry on the indices µ and λ we get

Rµ
βµν;λ − Rµ

βµλ;ν + Rµ
βνλ;µ , (6.139)

so

Rβν;λ − Rβλ;ν + Rµ
βνλ;µ = 0 . (6.140)

These equations are called the contracted Bianchi identities.

Let us now contract a second time on the indices β and ν:

gβν [Rβν;λ − Rβλ;ν + Rµ
βνλ;µ] = 0 . (6.141)

This gives

Rν
ν;λ − Rν

λ;ν + Rµν
νλ;µ = 0 . (6.142)
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so

R;λ − 2Rµ
λ;µ = 0 , (6.143)

or

2Rµ
λ;µ − R;λ = 0 . (6.144)

Since R;λ = gµ
λR;µ, we get

[

2Rµ
λ − 1

2g
µ

λR
]

;µ
= 0 . (6.145)

Raising the index λ with gλν we get

[

Rµν − 1
2g

µνR
]

;µ
= 0 . (6.146)

Defining

Gµν = Rµν − 1
2g

µνR (6.147)

we get

Gµν
;µ = 0 . (6.148)

The tensor Gµν is constructed only from the Riemann tensor and the metric, and

it is automatically divergence free as an identity. It is called the Einstein tensor,

since its importance for gravity was first understood by Einstein. We will see in

the next chapter that Einstein’s field equations for General Relativity are

Gµν =
8πG

c4
T µν , (6.149)

where T µν is the stress - energy tensor.

The Bianchi Identities then imply

T αβ
;β = 0 , (6.150)

which is the conservation of energy and momentum.


